ACCP Critical Care PRN: Guide for Appropriate Statistical Testing

PURPOSE

To provide a brief introduction to pharmacy residents on data classification and commonly used statistical tests.

DISCLAIMER

This document is to be used as an introductory guide and is not intended to replace a trained professional, statistician, or experienced researcher and is not intended to be the sole resource for individualized resident research projects. More complex statistical tests are not included in this guide.

ACKNOWLEDGEMENTS

This guide was created by members of the Critical Care PRN Research Committee with advanced education in statistical analysis in 2018. We would like to acknowledge the following members for their assistance in creating this resource: Melissa Thompson Bastin, PharmD, BCPS; Brittany Bissell, PharmD, BCCCP; Benjamin Hohlfelder, PharmD, BCPS; Joshua DeMott, PharmD, MSc, BCPS, BCCCP; Kendall Gross, PharmD, BCPS, BCCCP; Zachary Smith, PharmD, BCPS, BCCCP; Adrian Wong, PharmD, MPH, BCPS, BCCCP (chair).

APPROPRIATE TESTING,²

Prior to selecting an appropriate statistical test to analyze data, the data points (variables) should be defined with respect to the type of measurement scale used, whether or not the researcher has control over that specific variable, and the overall distribution of the data set. Four types of measurement scales exist (Table 1). Data should be classified as either an independent or dependent variable. Independent variables are those that are controlled or determined by the researcher. The result measured for is the dependent variable.

Type of Scale	Definition		Example
Nominal	- Data represented by categories	-	30-day mortality (Yes or No)
	- Each observation is required to fall into one of	-	Diagnosis of diabetes (Yes or
	the mutually exclusive categories		No)
Interval	- Quantitative data that can be measured	-	Temperature (^o C)
	- There is relative positioning with no gaps or		
	interruptions in the continuum that does not		
	include a value of zero		
Ratio	- Quantitative data that can be measured	-	Height
	- There is relative positioning with no gaps or	-	Weight
	interruptions in the continuum that does include a	-	Blood pressure
	value of zero		
Ordinal	- Data represented in an ascending or descending	-	Modified Rankin Scale (0-6)
	order, but the difference between units is not	-	Visual Pain Scale (0-10)
	necessarily the same		

Table 1. Measurement Scales

Once data collection is completed it can be organized into a distribution, or graph of frequency of occurrence. This is a visual representation of the data to allow the researcher to begin to define and analyze data. The researcher should classify the data set as parametric or non-parametric. If the data set shape is symmetrical and bell-shaped, it is defined as parametric (normal distribution). If the data set is non-parametric (not normally distributed) it can be classified as having bimodal distribution (data has two peaks of cluster, or areas with a high frequency level in the data scale), rectangular distribution (equal

frequency of occurrence across the data scale), or skewed data (data set trails off to either the high or low end of data scale). Statistical methods are defined as being parametric or nonparametric. The type of analysis method that should be selected is dependent on the nature of the data to be analyzed. Identification of three properties of a data set can then be used to determine the appropriate statistical test to analyze a data set (Table 2).

Independent Variable	Dependent Variable	Data Condition(s)	Statistical Test
None	Continuous	One variable	One-sample <i>t</i> -confidence interval
		Two variables - Parametric	Correlation
		- Non parametric	Spearman r
None	Discrete	One variable	Chi-square goodness of fit
		Two variables	Chi-square test of independence
		Two variables, small data set	Fisher's exact test
Discrete	Continuous	Independent variable (two groups)	
		- Unpaired, parametric	Two-sample <i>t</i> -test
		- Unpaired, nonparametric	Mann-Whitney U
		- Paired, parametric	Paired <i>t</i> -test
		- Paired, nonparametric	Wilcoxon matched-pair test
		Independent variable (two or	
		more groups)	
		- Unpaired, parametric	One-way analysis of variance
		- Unpaired, nonparametric	Kruskal-Wallis
		- Paired, parametric	Complete randomized block
Discrete	Discrete	Two variables	
		- Unpaired	Chi-square test of independence
		- Unpaired, small data sets	Fisher's exact test
		- Paired	McNemar test
		Risk estimates	
		- Retrospective	Odds ratio
		- Prospective	Relative risk ratio
Continuous	Continuous	Two variables	Linear regression
		More than one independent variable	Multiple regression

Table 2. Selection of Statistical Tests Based on Types of Variables¹

Chi-square test vs. Fisher's exact test

- Controversy exists regarding the use of these tests
- In general, the chi-square test assumes the following:
 - \circ No cell in contingency table should have an *expected* count <5
 - In larger tables, all cells should have *expected* counts >1 and ≤20% of expected counts should have a count <5
- The chi-square test approximates to a chi-square distribution, which is best done with a large sample size
 - Using this test in a small sample size may lead to testing inaccuracy and a reduction in power
- The Fisher's exact test computes an exact probability of the chi-square statistic and can be generally used in small sample sizes without breaking any assumptions

• Therefore, the Fisher's exact test may be "safer" to use in resident projects

REFERENCES

- 1. De Muth JE. Overview of biostatistics used in clinical research. Am J Health Syst Pharm. 2009;66(1):70-81.
- 2. Gaddis ML, Gaddis GM. Introduction to biostatistics: part 1, basic concepts. Ann Emerg Med. 1990;19:86-9.